Abstract
The increasing prevalence of Alzheimer's disease in older adults has raised significant concern in recent years. Aware of this challenge, this research set out to develop predictive models that allow early identification of people at risk for Alzheimer's disease, considering several variables associated with the disease. To achieve this objective, data mining techniques were employed, specifically the decision tree algorithm, using the RapidMiner Studio tool. The sample explore modify model and assess (SEMMA) methodology was implemented systematically at each stage of model development, ensuring an orderly and structured approach. The results obtained revealed that 45.00% of people with dementia present characteristics that identify them as candidates for confirmation of a diagnosis of Alzheimer's disease. In contrast, 52.78% of those who do not have dementia show no danger of contracting the disease. In the conclusion of the research, it was noted that most patients diagnosed with Alzheimer's are older than 65 years, indicating that this stage of life tends to trigger brain changes associated with the disease. This finding underscores the importance of considering age as a key factor in the early identification of the disease.
Published Version (Free)
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: International Journal of Electrical and Computer Engineering (IJECE)
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.