Abstract

The process of finding a correct forecast equation for photovoltaic electricity production from renewable sources is an important matter, since knowing the factors affecting the increase in the proportion of renewable energy production and reducing the cost of the product has economic and scientific benefits. This paper proposes a mathematical model for forecasting energy production in photovoltaic (PV) panels based on a self-organizing feature map (SOFM) model. The proposed model is compared with other models, including the multi-layer perceptron (MLP) and support vector machine (SVM) models. Moreover, a mathematical model based on a polynomial function for fitting the desired output is proposed. Different practical measurement methods are used to validate the findings of the proposed neural and mathematical models such as mean square error (MSE), mean absolute error (MAE), correlation (R), and coefficient of determination (R2). The proposed SOFM model achieved a final MSE of 0.0007 in the training phase and 0.0005 in the cross-validation phase. In contrast, the SVM model resulted in a small MSE value equal to 0.0058, while the MLP model achieved a final MSE of 0.026 with a correlation coefficient of 0.9989, which indicates a strong relationship between input and output variables. The proposed SOFM model closely fits the desired results based on the R2 value, which is equal to 0.9555. Finally, the comparison results of MAE for the three models show that the SOFM model achieved a best result of 0.36156, whereas the SVM and MLP models yielded 4.53761 and 3.63927, respectively. A small MAE value indicates that the output of the SOFM model closely fits the actual results and predicts the desired output.

Highlights

  • The primary source of energy used to generate electricity is fossil fuel, which is a non-renewable energy source (RES) since it will run out in the future

  • The main objective of this paper was to propose mathematical models to forecast the production of electrical current from photovoltaic panels using neural network techniques

  • Though the use of neural network methodologies to control and forecast current production is not new and many researchers have used and implemented them previously (15–33), it is worth noting that most of these applications are based on the use of supervised feed-forward neural networks

Read more

Summary

Introduction

The primary source of energy used to generate electricity is fossil fuel, which is a non-renewable energy source (RES) since it will run out in the future. It is important to explore renewable energy sources such as solar, geothermal, wind, etc., which are geographically site-specific. Solar energy is one of the best options for Gulf Cooperation Council (GCC) countries. Solar energy presents as both thermal and light components. The latter can be converted into electricity using solar cells or photovoltaic (PV) technology, which is proven to work, and has been used for a long time. Global production has increased by a factor of 370 since 1992 [1]

Objectives
Methods
Findings
Conclusion
Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call