Abstract

This paper reports SVR (Support Vector Regression) and GTM (Generative Topographic Mapping) modeling of three kinetic properties of cycloaddition reactions: rate constant (logk), activation energy (Ea) and pre-exponential factor (logA). A data set of 1849 reactions, comprising (4+2), (3+2) and (2+2) cycloadditions (CA) were studied in different solvents and at different temperatures. The reactions were encoded by the ISIDA fragment descriptors generated for Condensed Graph of Reaction (CGR). For a given reaction, a CGR condenses structures of all the reactants and products into one single molecular graph, described both by conventional chemical bonds and "dynamical" bonds characterizing chemical transformations. Different scenarios of logk assessment were exploited: direct modeling, application of the Arrhenius equation and temperature-scaled GTM landscapes. The logk models with optimal cross-validated statistics (Q2 =0.78-0.94 RMSE=0.45-0.86) have been challenged to predict rates for the external test set of 200 reactions, comprising both reactions that were not present in the training set, and training set transformations performed under different reaction conditions. The models are freely available on our web-server: http://cimm.kpfu.ru/models.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.