Abstract
Poly- and perfluorinated compounds (PFCs) are a class of global environmental pollutants that are of concern regarding their environmental fate and adverse effects. However, data on the basic physicochemical property of PFCs are still limited. To fill part of the data gaps, temperature-dependent predictive models for vapor pressure of PFCs were developed based on previously reported experimental data. The applicability domain of the models was analyzed using the Williams plot and the influential points and the response outliers were identified. The statistical performance of the models was significantly improved by removing these influential points and response outliers. This procedure confirmed the importance of properly defining the applicability domain of the predictive models. It is shown that the main factors governing the vapor pressure of PFCs, are intermolecular dispersive interactions, hydrogen bonding, temperature, intermolecular dipole-induced dipole interactions and dipole–dipole interactions. Although the model obtained could be used to reliably predict the vapor pressures of certain PFCs at different temperatures, it is essential that the prediction must fall within the applicability domain of the model and the temperature range for reliable predictions.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.