Abstract

Abstract Predicting casing wear has often been regarded as an empirical art as there are many influencing factors, including but not limited to the sizes and grades of the drill pipe and casing, type of hardbanding, drilling fluid properties, rate of penetration, trajectory and formation properties. Formations present in offshore Western Australia often contain loose and friable sands which produce highly abrasive cuttings which, when suspended and circulated in drilling fluid, are known to exacerbate casing wear. Casing wear is considerably worse in deviated and multilateral (ML) wells; Woodside's experience drilling ML wells has involved costly non-productive time (NPT) due to the subsequent requirement for remedial tieback systems to maintain well integrity. In 2018 and 2019 three tri-lateral wells were drilled as part of the larger Greater Enfield Project drilling campaign. Each of the multilateral wells were progressively longer and more challenging with regard to casing wear. Previous experience on nearby wells in analogous fields identified casing wear as a significant risk for the project. Further to this, an opportunity was identified to design the longest tri-lateral well as a quad-lateral well, which would allow increased recovery if reservoir quality was poorer than expected. The Drilling and Completion Engineering team were challenged with proving that casing wear could be effectively evaluated and managed during operations to allow a quad-lateral well design if required. Several key areas were investigated in order to effectively manage casing wear. These included: Assessment and measurement of casing manufacturing tolerances;Predictive casing wear modelling using well offsets in conjunction with casing wear software;Casing connection finite element analysis and mechanical hardbanding testing;Full length ultra-sonic testing of casing for wall thickness benchmarking;Hardbanding management plan (which formed part of the overall drill pipe fatigue management plan);Casing wear management plan based on well offsets and casing wear software modelling results, including additional controls such as 'krev' and swarf monitoring;Planning and execution of casing wear logging;Post well evaluation. The casing wear operational plan was effective in monitoring and limiting the amount of wear. It provided confidence to the management team that successful execution of a quad-lateral well was feasible. This paper will describe the steps taken to minimise casing wear, discuss comparisons between the predicted wear and the actual measured casing wear, and provide a recommended workflow for predicting casing wear in future wells where casing wear is a critical factor.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call