Abstract
Water-quality monitoring in urban lakes is of paramount importance due to the direct implications for ecosystem health and human well-being. This study presents a novel approach to predicting the Water Quality Index (WQI) in an urban lake over a span of two decades. Leveraging the power of Machine Learning (ML) algorithms, we developed models that not only predict, but also provide insights into, the intricate relationships between various water-quality parameters. Our findings indicate a significant potential in using ML techniques, especially when dealing with complex environmental datasets. The ML methods employed in this study are grounded in both statistical and computational principles, ensuring robustness and reliability in their predictions. The significance of our research lies in its ability to provide timely and accurate forecasts, aiding in proactive water-management strategies. Furthermore, we delve into the potential explanations behind the success of our ML models, emphasizing their capability to capture non-linear relationships and intricate patterns in the data, which traditional models might overlook.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.