Abstract

To investigate the relationship between antimalarial activity and molecular structures, a QSAR study is applied to a set of 19 Dihydrothiophenone compounds. This study is performed using the linear multiple regression (MLR) method. Calculations at the HF/6-31G (d, p) level of theory have been performed to obtain structure information. The molecular descriptors used are: carbonyl group vibrational frequency (Ѵ(C=O)), nitrogen-hydrogen vibrational frequency(Ѵ(NH)), entropy of formation (ΔfS) and lowest occupied energy(Elumo). The obtained model gives statistically significant results and shows good predictability: R2 = 0.925, S = 0.230 et F = 22.257. Internal and external validation parameters (Q2loo =0.934et Q2ext=0.748) reveal that the established model performs well in predicting the antimalarial activity of the investigated series of molecules Vibrational frequency of the carbonyl group (Ѵ(C=O)), is the priority descriptor in predicting the antimalarial activity of the investigated series of molecules. The acceptance criteria of Eriksson et al. used for the test set are verified.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call