Abstract
Despite numerous advantages of fused deposition modeling (FDM), the inherent layer-by-layer deposition behavior leads to considerable surface roughness and dimensional variability, limiting its usability for critical applications. This study has been conducted to select optimum parameters of FDM and vapour smoothing (chemical finishing) process to maximize surface finish, hardness, and dimensional accuracy. A self-adaptive cuckoo search algorithm for predictive modelling of surface and dimensional features of vapour-smoothened FDM-printed functional prototypes has been demonstrated. The chemical finishing has been performed on hip prosthesis (benchmark) using hot vapours of acetone (using dedicated experimental set-up). Based upon the selected design of experiment technique, 18 sets of experiments (with three repetitions) were performed by varying six parameters. Afterwards, a self-adaptive cuckoo search algorithm was implemented by formulating five objective functions using regression analysis to select optimum parameters. An excellent functional relationship between output and input parameters has been developed using a self-adaptive cuckoo search algorithm which has successfully found the solution to optimization issues related to different responses. The confirmatory experiments indicated a strong correlation between predicted and actual surface finish measurements, along with hardness and dimensional accuracy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.