Abstract

This paper presents accurate predictive modeling of the laser hardening process in terms of laser operating parameters and initial microstructure without the need of any experimental data. The model provides the diagrams that are useful for predicting hardness profiles, optimizing practical process parameters and assessing the potential of laser hardening for different steels. It is shown that the hardness and depth of the hardened layer in hypoeutectoid steels (carbon wt%<1) could be predicted from this model with good accuracy. The model combines a three-dimensional transient numerical solution for a rotating cylinder undergoing laser heating by a translating laser beam with a kinetic model describing pearlite dissolution, carbon redistribution in austenite and subsequent transformation to martensite by utilizing the feedback from the CCT diagram. In order to validate the thermal model and assert the accuracy of temperature predictions the temperature was measured using an infrared camera and a good agreement between the predicted and measured temperatures is shown. Results are presented as processing maps, which show how the case depth and hardness depend on input operating parameters. The good agreement between the measured and predicted hardness profiles ascertains the accuracy of the thermal-kinetic model developed for AISI5150H steels.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.