Abstract
Laser assisted hybrid machining being researched in past decade on various difficult to machine materials to improve the machinability. Predictive modeling approaches such as response surface method (RSM) and artificial neural network (ANN) are widely applied for model development. However, no reported work using RSM and ANN approaches to predict the relationship between the experimental variables (speed, feed, laser power and beam apporach angle) on surface roughness Ra (μm). Furthermore, coefficient of correlation (R2), root mean square error (RMSE) and model predictive error (MPE) are considered as a performance measures for their effectiveness. The results show that the ANN model estimates the machinability indices with high accuracy with a limited number of experiments compared to the response surface model. From the comparative study, ANN model is found to be capable for better prediction of response than the RSM model. ANN model provides a maximum precision benefit of 10% for surface roughness Ra (μm) compared with RSM model. Also the calculated Pearson correlation coefficient showed a robust relationship between the laser beam angle and Ra, surface roughness followed by the speed.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.