Abstract

A clear contradiction exists between cytotoxic in-vitro studies demonstrating effectiveness of Gemcitabine to curtail pancreatic cancer and in-vivo studies failing to show Gemcitabine as an effective treatment. The outcome of chemotherapy in metastatic stages, where surgery is no longer viable, shows a 5-year survival <5%. It is apparent that in-vitro experiments, no matter how well designed, may fail to adequately represent the complex in-vivo microenvironmental and phenotypic characteristics of the cancer, including cell proliferation and apoptosis. We evaluate in-vitro cytotoxic data as an indicator of in-vivo treatment success using a mathematical model of tumor growth based on a dimensionless formulation describing tumor biology. Inputs to the model are obtained under optimal drug exposure conditions in-vitro. The model incorporates heterogeneous cell proliferation and death caused by spatial diffusion gradients of oxygen/nutrients due to inefficient vascularization and abundant stroma, and thus is able to simulate the effect of the microenvironment as a barrier to effective nutrient and drug delivery. Analysis of the mathematical model indicates the pancreatic tumors to be mostly resistant to Gemcitabine treatment in-vivo. The model results are confirmed with experiments in live mice, which indicate uninhibited tumor proliferation and metastasis with Gemcitabine treatment. By extracting mathematical model parameter values for proliferation and death from monolayer in-vitro cytotoxicity experiments with pancreatic cancer cells, and simulating the effects of spatial diffusion, we use the model to predict the drug response in-vivo, beyond what would have been expected from sole consideration of the cancer intrinsic resistance. We conclude that this integrated experimental/computational approach may enhance understanding of pancreatic cancer behavior and its response to various chemotherapies, and, further, that such an approach could predict resistance based on pharmacokinetic measurements with the goal to maximize effective treatment strategies.

Highlights

  • We aim to quantify the link between pancreatic tumor growth observed in-vitro and that observed in-vivo by providing a novel integrated experimental/computational approach to predict the cancer drug response

  • The model predicts the treatment to mostly fail in real tumors regardless of the characteristics of individual cells. We confirm these results by treating real tumors in mice, showing that our integrated experimental/computational approach may improve the understanding of pancreatic cancer behavior and response to chemotherapy, and help to optimize treatment strategies

  • Mathematical Model of Tumor Growth We model the growth of pancreatic tumors in vivo building upon the formulation first described in [21] and further developed in [18,22,23,24]

Read more

Summary

Introduction

We aim to quantify the link between pancreatic tumor growth observed in-vitro and that observed in-vivo by providing a novel integrated experimental/computational approach to predict the cancer drug response. The most common chemotherapy drug, Difluorodeoxycytidine (dFdC, or gemcitabine), is a cytidine analogue which has shown activity as a single agent against solid human tumors. Multiple studies have evaluated the efficacy of gemcitabine in the treatment of unresectable and metastatic pancreatic cancer. The success of gemcitabine to treat pancreatic cancer is limited, resulting only in a slight prolongation of survival and a moderate improvement in quality of life. An early study in advanced pancreatic cancer showed a measurable response in 23.8% of patients with median survival of 5.7 months and 18% survival at 12 months [1]. Combination therapies including gemcitabine have been associated with minimal improvement when compared to gemcitabine alone [2,3,4,5]

Objectives
Methods
Results
Discussion
Conclusion
Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call