Abstract

This study focuses on ductile fracture behavior prediction for Ti6Al4V alloys fabricated via Selective Laser Melting (SLM). A modified Gurson-Tvergaard-Needleman (GTN) model characterizes void growth and shear mechanisms under uniaxial stress. The research explores the impact of Artificial Neural Network (ANN) architecture, specifically hidden layers and neurons, on predicting fracture parameters. Results reveal that increasing hidden layers substantially enhances accuracy, particularly for fracture displacement. Notably, predicting maximum force requires fewer layers than fracture displacement. Using selected layers and neurons, the system consistently achieved R2-values exceeding 0.99 for both maximum force and fracture displacement. The study identifies the initial void volume fraction (f0) parameter as having the most significant influence on both properties.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.