Abstract

Highway pavements deteriorate over time as successive wheel loads cause rutting, cracking, texture loss, and so forth. Design standards and pavement performance models account for some of the known contributory factors, such as levels of traffic and vehicle composition. However, such models are limited in their predictive power, and highway authorities must conduct regular pavement condition surveys rather than relying on the standard deterioration models alone. The ways in which multiple factors affect pavement deterioration, including rutting, are complex and are believed to include feedback loops where rutting then influences driving position, exacerbating the rutting levels. Standard regression models are not well suited to representing such complex causal mechanisms. This paper compares two alternative modeling approaches, structural equation models and auto-machine learning, and evaluates the predictive ability and practicalities of each. The findings indicate that auto-machine learning (AutoML) may be superior in its predictive ability. However, the “black box” nature of AutoML results makes them potentially less useful to practitioners. A process of using machine learning to help inform a structural equation model is proposed.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.