Abstract

Membrane fouling is the primary obstacle to applying anaerobic membrane bioreactors (AnMBRs) in municipal wastewater treatment. This issue holds critical significance as efficient wastewater treatment serves as a cornerstone for achieving environmental sustainability. This study uses machine learning to predict membrane fouling, taking advantage of rapid computational and algorithmic advances. Based on the 525-day operation data of a large pilot-scale AnMBR for treating real municipal wastewater, regression prediction was realized using multilayer perceptron (MLP) and long short-term memory (LSTM) artificial neural networks under substantial variations in operating conditions. The models involved employing the organic loading rate, suspended solids concentration, protein concentration in extracellular polymeric substance (EPSp), polysaccharide concentration in EPS (EPSc), reactor temperature, and flux as input features, and transmembrane pressure as the prediction target output. Hyperparameter optimization enhanced the regression prediction accuracies, and the rationality and utility of the MLP model for predicting large-scale AnMBR membrane fouling were confirmed at global and local levels of interpretability analysis. This work not only provides a methodological advance but also underscores the importance of merging environmental engineering with computational advancements to address pressing environmental challenges.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call