Abstract
Predictive modeling represents an emerging field that combines existing and novel methodologies aimed to rapidly understand physical mechanisms and concurrently develop new materials, processes, and structures. In the current study, previously unexplored predictive modeling in a key-enabled technology, the laser-based manufacturing, aims to automate and forecast the effect of laser processing on material structures. The focus is centered on the performance of representative statistical and machine learning algorithms in predicting the outcome of laser processing on a range of materials. Results on experimental data showed that predictive models were able to satisfactorily learn the mapping between the laser’s input variables and the observed material structure. These results are further integrated with simulation data aiming to elucidate the multiscale physical processes upon laser–material interaction. As a consequence, we augmented the adjusted simulated data to the experiment and substantially improved the predictive performance due to the availability of an increased number of sampling points. In parallel, an information-theoretic metric, which identifies and quantifies the regions with high predictive uncertainty, is presented, revealing that high uncertainty occurs around the transition boundaries. Our results can set the basis for a systematic methodology toward reducing material design, testing, and production cost via the replacement of expensive trial-and-error based manufacturing procedures with a precise pre-fabrication predictive tool.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.