Abstract
This research proposes a prediction model that might help reducing the dropout rate of university students in Peru. For this, a three-phase predictive analysis model was designed which was combined with the stages proposed by the IBM SPSS Modeler methodology. Bayesian network techniques was compared with decision trees for their level of accuracy over other algorithms in an Educational Data Mining (EDM) scenario. Data were collected from 500 undergraduate students from a private university in Lima. The results indicate that Bayesian networks behave better than decision trees based on metrics of precision, accuracy, specificity, and error rate. Particularly, the accuracy of Bayesian networks reaches 67.10% while the accuracy for decision trees is 61.92% in the training sample for iteration with 8:2 rate. On the other hand, the variables athletic person (0.30%), own house (0.21%), and high school grades (0.13%) are the ones that contribute most to the prediction model for both Bayesian networks and decision trees.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.