Abstract
Load and price prediction are an important component in the economic and secures operation of the competitive restructured power system energy market. This paper presents the use of an artificial neural network to half hourly ahead load prediction and half hourly ahead price prediction applications. By using historical weather, load consumption, price and calendar data, a multi-layer feed forward (FF) neural network trained with Back propagation (BP) algorithm was developed for the half hour ahead prediction. The developed algorithm for half hourly prediction has been tested with Australian market data. The result of ANN prediction model is compared with the conventional Multiple Regression (MR) prediction model.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.