Abstract
Predictive microbiology models are essential tools to model bacterial growth in quantitative microbial risk assessments. Various predictive microbiology models and sets of parameters are available: it is of interest to understand the consequences of the choice of the growth model on the risk assessment outputs. Thus, an exercise was conducted to explore the impact of the use of several published models to predict Listeria monocytogenes growth during food storage in a product that permits growth. Results underline a gap between the most studied factors in predictive microbiology modeling (lag, growth rate) and the most influential parameters on the estimated risk of listeriosis in this scenario (maximum population density, bacterial competition). The mathematical properties of an exponential dose–response model for Listeria accounts for the fact that the mean number of bacteria per serving and, as a consequence, the highest achievable concentrations in the product under study, has a strong influence on the estimated expected number of listeriosis cases in this context.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.