Abstract

Accurately mapping the spatial distribution of soil total nitrogen is important to precision agriculture and environmental management. Geostatistical methods have been frequently used for predictive mapping of soil properties. Recently, a local regression method, geographically weighted regression (GWR), got the attention of environmentalists as an alternative in spatial modeling of environmental attributes, due to its capability of incorporating various auxiliary variables with spatially varied correlation coefficients. The objective of this study is to compare GWR and ordinary cokriging (OCK) in predictive mapping of soil total nitrogen (TN) using multiple environmental variables. 353 soil Samples within the surface horizon of 0–20cm in a study area were collected, and their TN contents were measured for calibrating and validating the GWR and OCK interpolations. The environmental variables finally chosen as auxiliary data include elevation, land use types, and soil types. Results indicate that, although OCK is slightly better than GWR in global accuracy of soil TN prediction (the adjusted R2 for GWR and OCK are 0.5746 and 0.6858, respectively), the soil TN map interpolated by GWR shows many details reflecting the spatial variations of major auxiliary variables while OCK smoothes out almost all local details. Geographically weighted regression could account for both the spatial trend and local variations, whilst OCK had difficulties to capture local variations. It is concluded that GWR is a more promising spatial interpolation method compared to OCK in predicting soil TN and potentially other soil properties, if a suitable set of auxiliary variables are available and selected.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call