Abstract
This paper presents a sensory-updated degradation-based predictive maintenance policy (herein referred to as the SUDM policy). The proposed maintenance policy utilizes contemporary degradation models that combine component-specific real-time degradation signals, acquired during operation, with degradation and reliability characteristics of the component's population to predict and update the residual life distribution (RLD). By capturing the latest degradation state of the component being monitored, the updating process provides a more accurate of the remaining life. With the aid of a stopping rule, maintenance routines are scheduled based on the most recently updated RLD. The performance of the proposed maintenance policy is evaluated using a simulation model of a simple manufacturing cell. Frequency of unexpected failures and overall maintenance costs are computed and compared with two other benchmark maintenance policies: a reliability-based and a conventional degradation-based maintenance policy (without any sensor-based updating).
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Systems, Man, and Cybernetics - Part A: Systems and Humans
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.