Abstract

Failure of mission-critical equipment interrupts production and results in monetary loss. The risk of unplanned equipment downtime can be minimized through Predictive Maintenance of revenue generating assets to ensure optimal performance and safe operation of equipment. However, the increased sensorization of the equipment generates a data deluge, and existing machine-learning based predictive model alone becomes inadequate for timely equipment condition predictions. In this paper, a model-free Deep Reinforcement Learning algorithm is proposed for predictive equipment maintenance from an equipment-based sensor network context. Within each equipment, a sensor device aggregates raw sensor data, and the equipment health status is analyzed for anomalous events. Unlike traditional black-box regression models, the proposed algorithm self-learns an optimal maintenance policy and provides actionable recommendation for each equipment. Our experimental results demonstrate the potential for broader range of equipment maintenance applications as an automatic learning framework.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.