Abstract

This paper discusses the predictive maintenance (PM) problem of a single equipment system. It is assumed that the equipment has deteriorating quality states as it operates, resulting in multiple yield levels represented as system observation states. We cast the equipment deterioration as discrete-state and continuous-time semi-Markov decision process (SMDP) model and solve the SMDP problem in reinforcement learning (RL) framework using the strategy-based method. In doing so, the goal is to maximize the system average reward rate (SARR) and generate the optimal maintenance strategy for given observation states. Further, the PM time is capable of being produced by a simulation method. In order to prove the advantage of our proposed method, we introduce the standard sequential preventive maintenance algorithm with unequal time interval. Our proposed method is compared with the sequential preventive maintenance algorithm in a test objective of SARR, and the results tell us that our proposed method can outperform the sequential preventive maintenance algorithm. In the end, the sensitivity analysis of some parameters on the PM time is given.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.