Abstract

In an increasingly competitive industrial world, the need to adapt to any change at any time has become a major necessity for every industry to remain competitive and survive in their environments. Industries are undergoing rapid and perpetual changes on several levels. Indeed, the latter requires companies to be more reactive and involved in their policies of continuous improvement in order to satisfy their customers and maximize the quantity and quality of production, while keeping the cost of production as low as possible. Reducing downtime is one of the major objectives of these industries of the future. This paper aimed to apply machine learning algorithms on a TA-48 multistage centrifugal compressor for failure prediction and remaining useful life (RUL), i.e., to reduce system downtime using a predictive maintenance (PdM) approach through the adoption of Industry 4.0 approaches. To achieve our goal, we followed the methodology of the predictive maintenance workflow that allows us to explore and process the data for the model training. Thus, a comparative study of different prediction algorithms was carried out to arrive at the final choice, which is based on the implementation of LSTM neural networks. In addition, its performance was improved as the data sets were fed and incremented. Finally, the model was deployed to allow operators to know the failure times of compressors and subsequently ensure minimum downtime rates by making decisions before failures occur.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call