Abstract

Currently, machine learning (ML) based gully susceptibility prediction is a rapidly expanding research area. However, when assessing the predictive performance of ML models, previous research frequently overlooked the critical component of computational efficiency in favor of accuracy. This study aimed to evaluate and compare the predictive performance of six commonly used algorithms in gully susceptibility modeling. Artificial neural networks (ANN), partial least squares, regularized discriminant analysis, random forest (RF), stochastic gradient boosting, and support vector machine (SVM) were applied. The comparison was conducted under three scenarios of input feature set sizes: small (six features), medium (twelve features), and large (sixteen features). Results indicated that SVM was the most efficient algorithm with a medium-sized feature set, outperforming other algorithms across all overall accuracy (OA) metrics (OA = 0.898, F1-score = 0.897) and required a relatively short computation time (< 1 min). Conversely, ensemble-based algorithms, mainly RF, required a larger feature set to reach optimal accuracy and were computationally demanding, taking about 15 min to compute. ANN also showed sensitivity to the number of input features, but unlike RF, its accuracy consistently decreased with larger feature sets. Among geo-environmental covariates, NDVI, followed by elevation, TWI, population density, SPI, and LULC, were critical for gully susceptibility modeling. Therefore, using SVM and involving these covariates in gully susceptibility modeling in similar environmental settings is strongly suggested to ensure higher accuracy and minimal computation time.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call