Abstract
This paper addresses the problem of efficient predictive lossless compression on the regions of interest (ROIs) in the hyperspectral images with no-data regions. We propose a two-stage prediction scheme, where a context-similarity-based weighted average prediction is followed by recursive least square filtering to decorrelate the hyperspectral images for compression. We then propose to apply separate Golomb–Rice codes for coding the prediction residuals of the full-context pixels and boundary pixels, respectively. To study the coding gains of this separate coding scheme, we introduce a mixture geometric model to represent the residuals associated with various combinations of the full-context pixels and boundary pixels. Both information-theoretic analysis and simulations on synthetic data confirm the advantage of the separate coding scheme over the conventional coding method based on a single underlying geometric distribution. We apply the aforementioned prediction and coding methods to four publicly available hyperspectral image data sets, attaining significant improvements over several other state-of-the-art methods, including the shape-adaptive JPEG 2000 method.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
More From: IEEE Transactions on Geoscience and Remote Sensing
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.