Abstract

The major techniques for measuring jet noise have significant drawbacks, especially when including engine installation effects such as jet–flap interaction noise. Numerical methods including low order correlations and Reynolds-averaged Navier–Stokes (RANS) are known to be deficient for complex configurations and even simple jet flows. Using high fidelity numerical methods such as large eddy simulation (LES) allows conditions to be carefully controlled and quantified. LES methods are more practical and affordable than experimental campaigns. The potential to use LES methods to predict noise, identify noise risks, and thus modify designs before an engine or aircraft is built is a possibility in the near future. This is particularly true for applications at lower Reynolds numbers such as jet noise of business jets and jet-flap interaction noise for under-wing engine installations. Hence, we introduce our current approaches to predicting jet noise reliably and contrast the cost of RANS–numerical-LES (RANS–NLES) with traditional methods. Our own predictions and existing literature are used to provide a current guide, encompassing numerical aspects, meshing, and acoustics processing. Other approaches are also briefly considered. We also tackle the crucial issues of how codes can be validated and verified for acoustics and how LES-based methods can be introduced into industry. We consider that hybrid RANS–(N)LES is now of use to industry and contrast costs, indicating the clear advantages of eddy resolving methods.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.