Abstract

This article presents a new design framework for the specification and prototyping of geometrically and behaviorally complex materials with graded properties, coined predictive information modeling (PIM). The contribution is the development of new circular design workflows employing machine learning for predicting fabrication files based on performance and design requirements. The aim is linking endogenous capacities as well as exogenous environmental dynamics of graded materials, as an approach to material focused intelligent design systems. Using two experimental case studies, the research demonstrates PIM as an applied design framework for addressing (1) material uncertainty, (2) multi-scale data integration, and (3) cyclical fabrication workflows. Through the analysis of these models, we demonstrate research methods that are validated for design applications, review their implications, and discuss further trajectories.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.