Abstract

Guiding behavior requires the brain to make predictions about the future values of sensory inputs. Here, we show that efficient predictive computation starts at the earliest stages of the visual system. We compute how much information groups of retinal ganglion cells carry about the future state of their visual inputs and show that nearly every cell in the retina participates in a group of cells for which this predictive information is close to the physical limit set by the statistical structure of the inputs themselves. Groups of cells in the retina carry information about the future state of their own activity, and we show that this information can be compressed further and encoded by downstream predictor neurons that exhibit feature selectivity that would support predictive computations. Efficient representation of predictive information is a candidate principle that can be applied at each stage of neural computation.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.