Abstract

This paper formulates a generalised active disturbance rejection control technique based on Smith predictor (SP-GADRC) for power systems with communication delay. The SP-GADRC technique employs essential plant information and uses the notion of Smith predictor to alleviate the deterioration of transient response that arises due to the presence of communication delay in a system. The generalised formulae for computation of controller and observer gains for various single and multi-area power systems are derived. Furthermore, the effect of parametric uncertainty, nonlinearities, model-plant mismatch, load disturbances as well as varying time delay is examined to validate the robustness of the SP-GADRC technique. An elaborate comparative analysis is conducted with various existing approaches to exhibit efficacy of the SP-GADRC technique. The simulation results reveal that SP-GADRC scheme demonstrates an improved disturbance rejection ability, better transient performance and is robust to the presence of nonlinearities and disturbances in system.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call