Abstract

Robotic cardiac catheterization using ultrasound (US) imaging catheters provides real time imaging from within the heart while reducing the difficulty in manually steering a four degree-of-freedom (4-DOF) catheter. Accurate robotic catheter navigation in the heart is challenging due to a variety of disturbances including cyclical physiological motions, such as respiration. In this work we compensate for respiratory motion by using an Extended Kalman Filter (EKF) to predict target motion and by applying the predictions to steer the US imaging catheter. The system performance was measured in bench top experiments with phantom vasculature. The robotic system with predictive filtering tracked cyclically moving targets with 1.59 mm and 0.72° mean error. Accurately tracking moving structures can improve intra-procedural treatments and visualization.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.