Abstract

In this study, a novel H ∞ predictive event-triggered load frequency control has been developed for a hybrid power system with renewable energy sources (RESs) to deal with denial-of-service (DoS) attacks, where the DoS duration (the time attack lasts) are boundless. A predictive event-triggered transmission scheme is built for the multi-area hybrid power systems under DoS attacks to reduce the load of network bandwidth while maintaining adequate levels of performance. Therefore, an observer-based predictive controller is developed in the presence of both external disturbances and DoS attacks by formulating the LFC problem as a disturbance attenuation issue. In the proposed method, a hybrid power system with RESs is used to achieve novel and better security strategies. Based on the new model, sufficient conditions are obtained using the Lyapunov stability theory to ensure a stable multi-area hybrid power system with a prescribed H ∞ performance. Moreover, an algorithm is provided to obtain the control strategy of DoS attacks. Finally, the simulation of a hybrid power system with RESs is presented to demonstrate the effectiveness of the proposed method in dealing with the DoS attacks.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.