Abstract

The purpose of this paper is to quantify the extent of damage of rectangular reinforced concrete shear walls after an earthquake using surface crack patterns. One of the most important tasks after an earthquake is to assess the safety and classify the performance level of buildings. This assessment is usually performed by visual inspection that is prone to significant errors. In this research, an extensive database on the images of damaged rectangular reinforced concrete shear walls is collected from the literature. This database includes more than 200 images from experimental quasi-static cyclic tests. Using the concept of fractal geometry, several probabilistic models are developed by extracting and regenerating the surface crack patterns of the collected walls. These models can estimate the peak drift ratio that the structure has experienced. The peak drift ratio predicted by the proposed models of this paper can be used to calculate the probability of exceedance of different damage states using existing fragility models. Furthermore, new fragility models are directly developed using the images of the damaged walls of the collected database. The proposed fragility curves calculate the probability of exceedance of damage states using the crack pattern of the damaged shear walls and consequently provide an estimation of the loss, repair cost, and repair time of the walls.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.