Abstract
Hybrid electric air-ground vehicles (HEAGVs), which can run on the land and fly in the air, are considered a promising future transportation. The operation of HEAGVs, accompanied by high energy consumption, could lead to increasing battery temperature, which may affect the lifespan of the battery. To make the battery last longer and improve energy efficiency, an effective energy management strategy (EMS) is necessary for the operation of HEAGVs. In this regard, this paper proposes a predictive EMS based on model predictive control (MPC). Firstly, speed information is obtained by intelligent network technology to achieve a prediction of power demand, and then the state of charge (SOC) reference trajectory is planned. Secondly, a Pontryagin’s minimum principle-based model predictive control (PMP-MPC) framework is proposed, including battery thermal dynamics. Under the framework, fuel efficiency is improved by reducing the temperature of the battery. Finally, the proposed method is compared to PMP, dynamic programming (DP), and rule-based (RB) methods. The effect of different preview horizon sizes on fuel economy and battery temperature is analyzed. Verification results under two driving cycles indicate that compared with the rule-based method, the proposed method improves fuel economy by 5.14% and 5.2% and decreases the temperature by 5.9% and 4.9%, respectively. The results demonstrate that the proposed PMP-MPC method can effectively improve fuel economy and reduce temperature.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Similar Papers
More From: Applied Sciences
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.