Abstract
Ground-based aircraft trajectory prediction is a major concern in air traffic management. Focusing on the climb phase, neural networks are trained to predict some of the unknown point-mass model parameters. These unknown parameters are the mass and the speed intent. For each unknown parameter, our model predicts a Gaussian distribution. This predicted distribution is a predictive distribution: it is the distribution of possible unknown parameter values conditional to the observed past trajectory of the considered aircraft. Using this distribution, one can extract a predicted value and the uncertainty related to this specific prediction. This study relies on Automatic Dependent Surveillance-Broadcast data coming from The OpenSky Network. It contains the climbing segments of the year 2017 detected by the network. The obtained data set contains millions of climbing segments from all over the world. Using this data set, it is shown that despite having an error slightly larger than previously tested methods, the predicted uncertainty allows us to reduce the size of prediction intervals while keeping the same coverage probability. Furthermore, it is shown that the trajectories with a similar predicted uncertainty have an observed error close to the predicted one. The data set and the machine learning code are publicly available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.