Abstract

We present a novel, incompressible fluid simulation method based on the Lagrangian Smoothed Particle Hydrodynamics (SPH) model. In our method, incompressibility is enforced by using a prediction-correction scheme to determine the particle pressures. For this, the information about density fluctuations is actively propagated through the fluid and pressure values are updated until the targeted density is satisfied. With this approach, we avoid the computational expenses of solving a pressure Poisson equation, while still being able to use large time steps in the simulation. The achieved results show that our predictive-corrective incompressible SPH (PCISPH) method clearly outperforms the commonly used weakly compressible SPH (WCSPH) model by more than an order of magnitude while the computations are in good agreement with the WCSPH results.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.