Abstract
An accurate estimation of photovoltaic (PV) power production is crucial for organising and regulating solar PV power plants. The suitable prediction is often affected by the variable nature of solar resources, system location and some internal/external disturbances, such as system effectiveness, climatic factors, etc. This paper develops a novel strategy for applying a predictive control technique to PV power forecasting applications in a smart grid environment. The strategy develops the model predictive control (MPC) under demand response (DR) and some data-driven methods. It has been found that it is challenging to model an MPC for solar power forecasting regardless of its robustness and ability to handle constraints and disturbance. Thus, an optimal quadratic performance index-based MPC scheme is formulated to model a forecasting method for a PV power prediction. This strategy is then compared with some machine learning approaches. The developed strategies solve the problem of accurately estimating the direct current (DC) power yielded from the PV plant in a real-world implementation. The study also considers external disturbances to evaluate the significance of the developed methods for a suitable forecast. Therefore, this study optimally demonstrates that an accurate solar PV DC power prediction can relatively be estimated with an appropriate strategy, such as MPC and MLs, considering the system disturbances. This study also offers promising results for intelligent and real-time energy resource estimation that assist in developing the solar power sector.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.