Abstract

AbstractIn this paper a predictive control method especially suitable for the control of semi‐active friction dampers is proposed. By keeping the adjustable slip force of a semi‐active friction damper slightly lower than the critical friction force, the method allows the damper to remain in its slip state throughout an earthquake of arbitrary intensity, so the energy dissipation capacity of the damper can be improved. The proposed method is formulated in a discrete‐time domain and cast in the form of direct output feedback for easy control implementation. The control algorithm is able to produce a continuous and smooth slip force for a friction damper and thus avoid exerting the high‐frequency structural response that usually exists in structures with conventional friction dampers. Using a numerical study, the control performance of a multiple degrees of freedom (DOF) structural system equipped with passive friction dampers and semi‐active dampers controlled by the proposed method are compared. The numerical case shows that by merely using a single semi‐active friction damper and a few sensors, the proposed method is able to achieve better acceleration reduction than the case using multiple passive dampers. Copyright © 2004 John Wiley & Sons, Ltd.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call