Abstract

In this article we consider the sample size determination problem in the context of robust Bayesian parameter estimation of the Bernoulli model. Following a robust approach, we consider classes of conjugate Beta prior distributions for the unknown parameter. We assume that inference is robust if posterior quantities of interest (such as point estimates and limits of credible intervals) do not change too much as the prior varies in the selected classes of priors. For the sample size problem, we consider criteria based on predictive distributions of lower bound, upper bound and range of the posterior quantity of interest. The sample size is selected so that, before observing the data, one is confident to observe a small value for the posterior range and, depending on design goals, a large (small) value of the lower (upper) bound of the quantity of interest. We also discuss relationships with and comparison to non robust and non informative Bayesian methods.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.