Abstract

This paper focuses on predictive control of linear infinite dimensional systems with state and control constraints arising in the context of parabolic partial differential equations (PDEs). Initially, a parabolic PDE is presented and formulated as an infinite-dimensional system in an appropriate Hilbert space. Next, modal decomposition techniques are used to derive a finite-dimensional system that captures the dominant dynamics of the infinite-dimensional system, and express the infinite-dimensional state constraints in terms of the finite-dimensional system state constraints. A number of model predictive control (MPC) formulations, designed on the basis of different finite-dimensional approximations, are then presented and compared. The closed-loop stability properties of the infinite-dimensional system under the low order MPC controller designs are analyzed, and sufficient conditions that guarantee stabilization and state constraint satisfaction for the infinite-dimensional system under the reduced order MPC formulations are derived. Other formulations are also presented which differ in the way the evolution of the fast eigenmodes is accounted for in the performance objective and state constraints. The impact of these differences on the ability of the predictive controller to enforce closed-loop stability and state constraints satisfaction in the infinite-dimensional system is analyzed

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.