Abstract

2-Methyl-3-buten-2-ol (MBO232) is a potential biofuel and renewable fuel additive. In a combustion environment, the consumption of MBO232 is mainly through the reaction with a OH radical, one of the most important oxidants. Here, we predict the intricate reactions of MBO232 and OH radicals under a broad range of combustion conditions, that is, 230-2500 K and 0.01-1000 atm. The potential energy surfaces of H-abstraction and OH-addition have been investigated at the CCSD(T)/CBS//M06-2X/def2-TZVP level, and the rate constants were calculated via Rice-Ramsperger-Kassel-Marcus/master equation (RRKM/ME) theory. The decomposition reactions of the critical intermediates from the OH-addition reactions have also been studied. Our results show that OH-addition reactions are dominant below 850 K, while H-abstraction reactions, especially the channel-abstracting H atoms from the methyl groups, are more competitive at higher temperatures. We found that it is necessary to discriminate H atoms attached to the same C atom, as their abstraction rates can differ by up to 1 order of magnitude. The calculated results show good agreement with the reported experimental data. We have provided the modified Arrhenius expressions for rate constants of the dominant channels. The kinetic data determined in this work are of much value for constructing the combustion models of MBO232 and understanding the combustion kinetics and mechanism of other unsaturated alcohols.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.