Abstract
BackgroundMachine learning (ML) methods have shown promise in the development of patient-specific predictive models prior to surgical interventions. The purpose of this study was to develop, test, and compare four distinct ML models to predict postoperative parameters following primary total knee arthroplasty (TKA). MethodsData from the Nationwide Inpatient Sample was used to identify patients undergoing TKA during 2016–2017. Four distinct ML models predictive of mortality, length of stay (LOS), and discharge disposition were developed and validated using 15 predictive patient and hospital-specific factors. Area under the curve of the receiver operating characteristic curve (AUCROC) and accuracy were used as validity metrics, and the strongest predictive variables under each model were assessed. ResultsA total of 305,577 patients were included. For mortality, the XGBoost, neural network (NN), and LSVM models all had excellent responsiveness during validation, while random forest (RF) had fair responsiveness. For predicting LOS, all four models had poor responsiveness. For the discharge disposition outcome, the LSVM, NN, and XGBoost models had good responsiveness, while the RF model had poor responsiveness. LSVM and XGBoost had the highest responsiveness for predicting discharge disposition with an AUCROC of 0.747. DiscussionThe ML models tested demonstrated a range of poor to excellent responsiveness and accuracy in the prediction of the assessed metrics, with considerable variability noted in the predictive precision between the models. The continued development of ML models should be encouraged, with eventual integration into clinical practice in order to inform patient discussions, management decision making, and health policy.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.