Abstract

The actuator disc (AD) model combined with the Reynolds-averaged Navier-Stokes (RANS) model has been demonstrated as the most effective approach for simulating wind farm wakes due to its computational efficiency and acceptable accuracy. However, challenges remain in defining the reference inflow wind speed for the AD model and identifying a robust turbulence model for the RANS method. To solve these issues, two strategies for establishing the AD model (AD-up1D model and AD-local model), along with four turbulence models (standard k-Δ, SST k-ω, linear pressure-strain RSM and modified RSM), are comprehensively validated here to predict multiple wakes within two representative wind farms. The temporal variability of multiple turbines’ power output and the significant impact of wind direction on the power is particularly emphasized. Overall, this study indicates that the proposed AD-local/Mod RSM method facilitates a realistic wake recovery in the cumulated wake flow and agrees well with the field measurements. It consistently performs well, never ranking last in any test cases, with percentage deviations ranging from 1.8% to 9.0%. Most importantly, this study evaluates the strengths and weaknesses of each AD/RANS method and provides recommendations for wind farm design purposes.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call