Abstract

Tuberculosis is a leading cause of infectious death worldwide, with almost a fourth of the world's population latently infected with its causative agent, Mycobacterium tuberculosis. Current diagnostic methods are insufficient to differentiate between healthy and latently infected populations. Here, we used a machine learning approach to analyze publicly available proteomic data from saliva and serum in Ethiopia's healthy, latent TB (LTBI) and active TB (ATBI) people. Our analysis discovered a profile of six proteins, Mast Cell Expressed Membrane Protein-1, Hemopexin, Lamin A/C, Small Proline Rich Protein 2F, Immunoglobulin Kappa Variable 4-1, and Voltage Dependent Anion Channel 2 that can precisely differentiate between the healthy and latently infected populations. This data suggests that a combination of six host proteins can serve as accurate biomarkers to diagnose latent infection. This is important for populations living in high-risk areas as it may help in the surveillance and prevention of severe disease.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.