Abstract

The probability of illness caused by very low doses of pathogens cannot generally be tested due to the numbers of subjects that would be needed, though such assessments of illness dose response are needed to evaluate drinking water standards. A predictive Bayesian dose-response assessment method was proposed previously to assess the unconditional probability of illness from available information and avoid the inconsistencies of confidence-based approaches. However, the method uses knowledge of the conditional dose-response form, and this form is not well established for the illness endpoint. A conditional parametric dose-response function for gastroenteric illness is proposed here based on simple numerical models of self-organized host-pathogen systems and probabilistic arguments. In the models, illnesses terminate when the host evolves by processes of natural selection to a self-organized critical value of wellness. A generalized beta-Poisson illness dose-response form emerges for the population as a whole. Use of this form is demonstrated in a predictive Bayesian dose-response assessment for cryptosporidiosis. Results suggest that a maximum allowable dose of 5.0 x 10(-7) oocysts/exposure (e.g., 2.5 x 10(-7) oocysts/L water) would correspond with the original goals of the U.S. Environmental Protection Agency Surface Water Treatment Rule, considering only primary illnesses resulting from Poisson-distributed pathogen counts. This estimate should be revised to account for non-Poisson distributions of Cryptosporidium parvum in drinking water and total response, considering secondary illness propagation in the population.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.