Abstract
An improvement in energy efficiency of Battery Thermal Management Systems (BTMS) can increase range and reduce well-to-wheel emissions of Battery Electric Vehicles (BEV). In this work, the potential of a predictive BTMS using Quantile Convolutional Neural Networks (QCNN) was examined. The QCNN provided quantile predictions of battery temperature based on input data from both previous and following drive segments. The predictive control was designed to choose battery cooling thresholds based on a weighted sum of battery cooling, ageing and derating costs derived by the quantile predictions. The predictive BTMS was analyzed concerning its adaptability to different routes ahead, tunability of cost weights as well as robustness to uncertainty of inputs. A setup with unchanged ageing costs reduced average cooling costs by 9% compared to a fixed threshold strategy in a set of 18 scenarios. Simplifications and limitations were discussed to provide a base for further improvements, for example concerning the limited freedom of cooling threshold choice. In conclusion, the developed framework was able to use QCNN predictions to increase the BTMS energy efficiency while taking ageing and derating effects into account.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.