Abstract
In this paper, artificial neural network (ANN) models are developed to predict the load-displacement curves for better understanding the behavior of cotton fiber/polyvinyl chloride (PVC) composites. Series of experiments were undertaken in the laboratory for a varying percentage of composite fiber to characteristic loading. Based on those experimental data, the ANN models were trained and tested on the TensorFlow backend using Keras library in Python by implementing the back-propagation method. For better prediction and accuracy of the load-displacement curves, the grid search hyperparameter tuning method was used, followed by k-fold cross-validation. The developed approach proved to be very efficient and reduced the time and effort of the behavioral study for numerous samples, and it will help materials designers to design their future experiments effectively. A similar approach to predict load-displacement curves using ANN can be extended for any kind of composite material if the necessary experimental data are available.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.