Abstract
The accuracy of a yield trial can be increased by improved experimental techniques, more replicates, or more efficient statistical analyses. The third option involves nominal fixed costs, and is therefore very attractive. The statistical analysis recommended here combines the Additive main effects and multiplicative interaction (AMMI) model with a predictive assessment of accuracy. AMMI begins with the usual analysis of variance (ANOVA) to compute genotype and environment additive effects. It then applies principal components analysis (PCA) to analyze non-additive interaction effects. Tests with a New York soybean yield trial show that the predictive accuracy of AMMI with only two replicates is equal to the predictive accuracy of means based on five replicates. The effectiveness of AMMI increases with the size of the yield trial and with the noisiness of the data. Statistical analysis of yield trials with the AMMI model has a number of promising implications for agronomy and plant breeding research programs.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.