Abstract

PurposeExisting class activation mapping (CAM) techniques extract the feature maps only from a single layer of the convolutional neural net (CNN), generally from the final layer and then interpolate to upsample to the original image resolution to locate the discriminative regions. Consequently these provide a coarse localization that may not be able to capture subtle abnormalities in medical images. To alleviate this, our work proposes a technique called high resolution class activation mapping (HR-CAMs) that can provide enhanced visual explainability to the CNN models.MethodsHR-CAMs fuse feature maps by training a network using the input from multiple layers of a trained CNN, thus gaining information from every layer that can localize abnormalities with greater details in original image resolution. The technique is validated qualitatively and quantitatively on a simulated dataset of 8,000 images followed by applications on multiple image analysis tasks that include (1) skin lesion classification (ISIC open dataset—25,331 cases) and (2) predicting bone fractures (MURA open dataset—40,561 images) (3) predicting Parkinson’s disease (PD) from neuromelanin sensitive MRI (small cohort-80 subjects).ResultsWe demonstrate that our model creates clinically interpretable subject specific high resolution discriminative localizations when compared to widely used CAMs and Gradient-CAMs.ConclusionHR-CAMs provide finer delineation of abnormalities thus facilitating superior explainability to CNNs as has been demonstrated from its rigorous validation.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.