Abstract

We present the development of a predictive performance model for the high-performance computing code Hydra, a hydrodynamics benchmark developed and maintained by the United Kingdom Atomic Weapons Establishment (AWE). The developed model elucidates the parallel computation of Hydra, with which it is possible to predict its run-time and scaling performance on varying large-scale chip multiprocessor (CMP) clusters. A key feature of the model is its granularity; with the model we are able to separate the contributing costs, including computation, point-to-point communications, collectives, message buffering and message synchronisation. The predictions are validated on two contrasting large-scale HPC systems, an AMD Opteron/InfiniBand cluster and an IBM BlueGene/P, both of which are located at the Lawrence Livermore National Laboratory (LLNL) in the US. We validate the model on up to 2,048 cores, where it achieves a >85% accuracy in weak-scaling studies. We also demonstrate use of the model in exposing the increasing costs of collectives for this application, and also the influence of node density on network accesses, therefore highlighting the impact of machine choice when running this hydrodynamics application at scale.

Full Text
Paper version not known

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.