Abstract
As 360-degree videos and virtual reality (VR) applications become popular for consumer and enterprise use cases, the desire to enable truly mobile experiences also increases. Delivering 360-degree videos and cloud/edge-based VR applications require ultra-high bandwidth and ultra-low latency <xref ref-type="bibr" rid="ref1" xmlns:mml="http://www.w3.org/1998/Math/MathML" xmlns:xlink="http://www.w3.org/1999/xlink">[1]</xref> , challenging to achieve with mobile networks. A common approach to reduce bandwidth is streaming only the field of view (FOV). However, extracting and transmitting the FOV in response to user head motion can add high latency, adversely affecting user experience. In this paper, we propose a predictive adaptive streaming approach, where the predicted view with high predictive probability is adaptively encoded in relatively high quality according to bandwidth conditions and transmitted in advance, leading to a simultaneous reduction in bandwidth and latency. The predictive adaptive streaming method is based on a deep-learning-based viewpoint prediction model we develop, which uses past head motions to predict where a user will be looking in the 360-degree view. Using a very large dataset consisting of head motion traces from over 36,000 viewers for nineteen 360-degree/VR videos, we validate the ability of our predictive adaptive streaming method to offer high-quality view while simultaneously significantly reducing bandwidth.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.